142 research outputs found

    Polynomial spaces revisited via weight functions

    No full text
    167-198International audienceExtended Chebyshev spaces are natural generalisations of polynomial spaces due to the same upper bounds on the number of zeroes. In a natural approach, many results of the polynomial framework have been generalised to the larger Chebyshevian framework, concerning Approximation Theory as well as Geometric Design. In the present work, we go the reverse way: considering polynomial spaces as examples of Extended Chebyshev spaces, we apply to them results specifically developed in the Chebyshevian framework. On a closed bounded interval, each Extended Chebyshev space can be defined by means of sequences of generalised derivatives which play the same rôle as the ordinary derivatives for polynomials. We recently achieved an exhaustive description of the infinitely many such sequences. Surprisingly, this issue is closely related to the question of building positive linear operators of the Bernstein type. As Extended Chebyshev spaces, one can thus search for all generalised derivatives which can be associated with polynomials spaces on closed bounded intervals. Though this may a priori seem somewhat nonsensical due to the simplicity of the ordinary derivatives, this actually leads to new interesting results on polynomial and rational Bernstein operators and related results of convergence

    Which spline spaces for design?

    Get PDF
    International audienceWe recently determined the largest class of spaces of sufficient regularity which are suitable for design. How can weconnect different such spaces, possibly with the help of connection matrices, to produce the largest class of splinesusable for design? We present the answer to this question, along with some of the major difficulties encountered toestablish it.We would like to stress that the results we announce are far from being a straightforward generalisationof previous work on piecewise Chebyshevian splines

    Piecewise Extended Chebyshev Spaces: a numerical test for design

    Get PDF
    Given a number of Extended Chebyshev (EC) spaces on adjacent intervals, all of the same dimension, we join them via convenient connection matrices without increasing the dimension. The global space is called a Piecewise Extended Chebyshev (PEC) Space. In such a space one can count the total number of zeroes of any non-zero element, exactly as in each EC-section-space. When this number is bounded above in the global space the same way as in its section-spaces, we say that it is an Extended Chebyshev Piecewise (ECP) space. A thorough study of ECP-spaces has been developed in the last two decades in relation to blossoms, with a view to design. In particular, extending a classical procedure for EC-spaces, ECP-spaces were recently proved to all be obtained by means of piecewise generalised derivatives. This yields an interesting constructive characterisation of ECP-spaces. Unfortunately, except for low dimensions and for very few adjacent intervals, this characterisation proved to be rather difficult to handle in practice. To try to overcome this difficulty, in the present article we show how to reinterpret the constructive characterisation as a theoretical procedure to determine whether or not a given PEC-space is an ECP-space. This procedure is then translated into a numerical test, whose usefulness is illustrated by relevant examples

    Approximation by Müntz spaces on positive intervals

    Get PDF
    International audienceThe so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of Weierstrass' theorem. We show how to extend his result to Müntz spaces on positive intervals

    Convergence of univariate non-stationary subdivision schemes via asymptotical similarity

    Get PDF
    A new equivalence notion between non-stationary subdivision schemes, termed asymptotical similarity, which is weaker than asymptotical equivalence, is introduced and studied. It is known that asymptotical equivalence between a non-stationary subdivision scheme and a convergent stationary scheme guarantees the convergence of the non-stationary scheme. We show that for non-stationary schemes reproducing constants, the condition of asymptotical equivalence can be relaxed to asymptotical similarity. This result applies to a wide class of non-stationary schemes of importance in theory and applications
    • …
    corecore